CSE 451: Operating Systems Winter 2013

Prolegomena

Gary Kimura

Introduction

- Instructor
 - A bit about myself
 - Gary Kimura CSE 476
- Sources of Information
 - Lectures
 - Reading
 - Projects / Source code
 - All are important
- Lectures
 - Supplement rather than recapitulate text
 - Lots of historical/developmental info
 - Lots of "why was it done this way" info
 - ASK QUESTIONS!

Class tools

- Primary textbook
 - Anderson and Dahlin, Operating Systems Principle and Practices
 - Keep up with the reading.
 - Far better for you to read the chapters BEFORE the class
- Ancillary C and Windows reference books
 - Kernighan and Ritchie, *The C Programming Language*
 - Russinovich and Solomon, *Microsoft Windows Internals*
- Class email list
- Class discussion board

Class projects

- Projects based on Windows Research Kernel (Windows 2003 Server) sources
- 4 projects
 - Two individual projects and two group projects
 - You Will Write Code. You Will Read Lots of Code
 - You are either very familiar with C or will become so quickly
- Form 3-person teams during the first week of class
 - Pick one person from your team to communicate to the TAs the names of the members of your team
 - If this is not accomplished by January 17 you will be randomly assigned to a team

Grading

- Goal is to determine what YOU have learned and can express
 - Scores available via Catalyst
- Grading scale (subject to change)
 - 40% Projects (5%, 5%, 15%, 15%)
 - 20% Friday Quizzes
 - Expect 7-8, dropping the lowest or missed quiz. No make up for missed quizzes. Plan accordingly.
 - 30% Final Exam
 - 10% Participation
- Policies
 - Collaboration vs Cheating
 - Late projects

Course Objectives

- Two views of an OS
 - The OS user's (i.e., application programmer's) view
 - The OS implementer's view
- In this class we will learn:
 - Historical motivations
 - What are the major parts of an O.S.
 - How is the O.S. and each sub-part structured
 - What are the important common interfaces
 - What are the important policies
 - What algorithms are typically used
 - What engineering/practicality tradeoffs were used

Philosophy

- You may not ever build an OS
 - But as a computer scientist or computer engineer you need to understand the foundations
 - Most importantly, operating systems exemplify the sorts of engineering design tradeoffs that you'll need to make throughout your careers – compromises among and within cost, performance, functionality, complexity, schedule …
- A good OS should be easily usable by everyone

Copyright 3 2002 Thaves, Distributed by Newspaper Enterprise Association, Inc.